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Abstract
A generalized form of Ginzburg–Landau theory is proposed which explains
the non-hexagonal flux-line lattice found both in metallic and mag-
netic superconductors without invoking any anisotropic material-dependent
properties. The Gibbs energy density postulated for magnetic superconductors
(g) is of the form g(B, T ) = α|ψ |2 + 1

2β|ψ |4 + [1/(2m)]|(−ih̄∇−2eA)ψ |2 +∫
(B/µ0 − Mions) · dB − (B/µ0 − Mions) · (µ0M + µ0Hext ) where M is

the total local magnetization, Mions is the local magnetization of the magnetic
ions and Hext is the externally applied field strength. The macroscopic Gibbs
energy density and magnetization close to the upper critical field have been
calculated for all possible periodic flux-line lattice structures, for high and low
values of the Ginzburg–Landau constant (κ) in both metallic and magnetic
superconductors.

The generalized theory is consistent with standard theory for high-κ
metallic superconductors. However, for low-κ and/or strongly paramagnetic
superconductors for which (1 + χ ′)/2 < κ2 < 3.45(1 + χ ′)2/(1 − χ ′)2, where
χ ′ is the differential susceptibility of the paramagnetic ions in the normal
state, non-hexagonal flux-line lattice structures occur. When the flux-line
lattice is non-hexagonal, (∂〈MSC〉/∂〈Hext 〉)Hext≈HC2 = (1 − χ ′)/(3 + χ ′).
Ferromagnetic and antiferromagnetic superconductivity occur when χ ′ >

1. Furthermore, increasingly strong paramagnetism coexisting with super-
conductivity can produce a type I–type II phase transition. Experimental
evidence for these phenomena and for a correlation between strong para-
magnetism in magnetic superconductors and re-entrant superconductivity is
discussed.

1. Introduction

The Ginzburg–Landau (G–L) theory for superconducting materials provides the most widely
used framework for describing metallic and magnetic superconductors in magnetic fields [1].
In its original form, it describes the properties of extreme type II metallic superconductors
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close to the upper critical field and TC . Gorkov later showed that for this limited range
of materials and phase space, the theory is consistent with microscopic theory [2]. When
G–L theory is extended to lower magnetic fields and low-κ materials, broad agreement
between theory and experiment remains. It explains the origins of the two classes of
superconductor—type I and type II. The magnetic response of superconductors is described
qualitatively correctly, including the role of the lower and upper critical fields in type II
materials. It also describes the hexagonal flux-line lattice that is commonly found in metallic
superconductors in high fields [3]. There is little doubt that G–L theory must include
most of the important elements required to describe the properties of superconductors in
magnetic fields.

Nevertheless, early magnetic studies on low-κ superconductors (Nb [4], V [5] and Pb
alloys [6, 7]) showed a first-order phase transition at the lower critical field which suggested
that the flux-line lattice is not always hexagonal [8]. The non-hexagonal flux-line lattice
was found in Pb–Tl alloys using Bitter pattern techniques in low magnetic fields [9]. The
structure of the flux-line lattice was found to be strongly correlated with its orientation to the
crystal structure [7]. Anisotropy in material properties such as the energy gap [10], the elastic
properties of the flux-line lattice [11], the Fermi surface [12] and the microscopic electronic
and phononic properties [13] were all investigated theoretically to explain non-hexagonal flux-
line lattice structures. More recently, there have been intensive neutron scattering studies of
magnetic superconductors that show non-hexagonal flux-line lattice structures in high magnetic
fields. Square [14–16], rectangular [9] and rhombohedral [14] flux-line lattice structures
have all been observed experimentally. Renewed effort has been directed at understanding
material-dependent, microscopic properties to explain the non-hexagonal lattice including
non-local effects [17], and unconventional symmetries of the order parameter [18, 19].
There is no doubt that the anisotropy of the normal-state electronic and superconducting
properties can distort the hexagonal flux-line lattice. However, a different approach is adopted
in this paper [20]. Generalized Ginzburg and Landau equations are used to describe the
thermodynamic properties of both metallic and magnetic superconductors. It is shown that
non-hexagonal lattices can also be explained without introducing any anisotropic material-
dependent properties. It is understood that this is a controversial approach, since there is a vast
body of theoretical and experimental work in the literature which the scientific community
naturally has taken to provide strong support for the validity of the standard G–L equations.
However, the formulism outlined in this paper broadly agrees with standard results for high-κ ,
metallic superconductors. The new properties arise for low-κ and/or strongly paramagnetic
superconductors where agreement between standard theory and experimental work is far less
secure. Indeed experimental support for the generalized framework proposed is discussed near
the end of the paper.

The paper is structured as follows. Section 2 provides the definitions for the field and
energy terms used in this paper. Section 3 reviews standard G–L theory and justifies the
generalization proposed. In section 4, the results that follow from the general G–L theory are
presented both in graphical and analytical form. Calculations of the macroscopic Gibbs energy
density and the macroscopic magnetization for both metallic and magnetic superconductors in
applied fields close to the upper critical field, for all flux-line lattice structures and any value of κ
(recall: κ is the Ginzburg–Landau parameter) are presented. The conditions for non-hexagonal
flux-line lattice structures and antiferromagnetic and ferromagnetic superconductivity [20] are
provided. Finally, comparison between the theory and experimental data in the literature is
made. The generalized theory provides an explanation for the type I–type II phase transition
observed in metallic and magnetic superconductors [21–23] and may also explain re-entrant
superconductivity in some strongly magnetic superconductors.
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2. Definitions of fields and energies for superconductors

There are many different conventions used to define the characteristic fields and energies
relevant for the analysis of superconductors. This section outlines the definitions of the
symbols used in this paper. An important issue is the distinction between microscopic or
local (i.e. intensive) properties and macroscopic (i.e. extensive) properties. It is assumed in
this paper that the intensive properties at any point are defined by an average over the local
region and that this region is much shorter than any of the characteristic lengths in G–L theory.
Macroscopic properties are an average for the entire cylindrical sample.

The symbol used for the local net field is B. The local magnetization which by definition is
the sum of the magnetic moments within a local volume divided by the local volume is M . For
magnetic superconductors, the contribution from the magnetic ions (Mions) can be separated
from that of the supercurrent (Msc) where by definition M = Msc + Mions . Following the
usual definitions, the local magnetic field strength H is given by H = B/µ0 − M and the
local magnetic vector potential A by B = ∇×A. The macroscopic equivalent parameters are
described using angular brackets, so by definition 〈B〉 = ∫

B dV and the volume integral is
for the entire system (i.e. all space). This integral produces characteristic values of the relevant
variable for the whole material. Use of lower case letters for energy terms will denote so-called
specific properties (i.e. energy per unit volume). As with field terms, angular brackets are used
to distinguish energies that are macroscopic rather than local.

A self-consistent set of thermodynamic functions can be used to find equilibrium
properties. We first follow the formulism outlined by de Gennes and others [24–26]. Consider
a set of coils that produce an applied field strength, Hext , and contain a magnetic material of
any type. If the current in the coils is changed, the work done by the external currents (Jext )
in a time δt is by definition the change in the Helmholtz energy (δF ) where F = U − T S.
Using Maxwell’s equations ∇ × E = −dB/dt and ∇ × H = Jext and the vector identity
∇ · (H × E) = H · (∇ × E)− E · (∇ × H), this can be written as

∂F = −〈E · Jext 〉 ∂t = 〈H · dB〉. (1)

This expression for the Helmholtz energy fully accounts for a spatial variation in H and B.
One can construct the Gibbs energy by adding a term which can be called the Zeeman term
[27] so that

G = F − 〈B · H〉. (2)

Using ∇ · B = 0 and B = ∇ × A, and integrating by parts, it can be shown that

dG = −〈B · dH〉 = −〈A · ∂Jext 〉. (3)

Thus ∂G = 0 when T and the externally applied field are fixed.
One can also separate the Helmholtz energy associated with the magnetic material

(FMaterial) from that of the coils (FCoils). Equation (1) can be rewritten as

∂F = µ0〈H · dH〉 + µ0〈H · dM〉 = ∂FMaterial + ∂FCoils . (4)

Hence one can construct a Gibbs energy for the material (GMaterial) of the form

GMaterial = FMaterial − µ0〈H · M〉 (5)

where again ∂GMaterial = 0 when T and the externally applied field are fixed.
Following much of the literature, the analysis in this paper is limited to an isotropic

cylindrical superconductor of unit volume with the applied field parallel to the axis of
the cylinder. This reduces the analysis to two dimensions and eliminates the need to
introduce volume terms or demagnetization factors. Standard notation is used so that



6098 D P Hampshire

the superconductivity is destroyed when the applied field strength is HC2. For magnetic
superconductors the upper critical field (BC2) is given by BC2 = µ0(1 + χ ′)HC2 where χ ′ is
the differential susceptibility of the paramagnetic ions. For metallic superconductors χ ′ = 0.

3. Ginzburg–Landau theory for metallic and magnetic superconductors

Ginzburg and Landau proposed a local Helmholtz energy density (f ) for a metallic super-
conductor of the form [1]

f = α |ψ |2 +
1

2
β |ψ |4 +

1

2m
|(−ih̄∇ − 2eA)ψ |2 +

∫
HG−L · dB (6)

where α and β are constants and ψ is the wavefunction. The integral is known as the
field energy-density term where HG−L = B/µ0 for metallic superconductors and HG−L =
B/µ0 − Mions for magnetic superconductors where Mions is the magnetization of the ions
[1, 3, 24, 28, 29]. The primary support for the G–L equations as they are usually constructed
comes from experiment and theory for high-κ materials. We suggest that the confirmation
of their validity of the equations for low-κ and/or strongly magnetic superconductors is not
provided by experiment.

In constructing the Gibbs energy density from this Helmholtz functional, one must
identify the minimum volume which may be considered to reach a local equilibrium. For
the magnetic systems considered in section 2, any region of interest reaching equilibrium is
larger than the length scale on which currents flow that produce the magnetic moments. The
magnetic moments produce flux that is completely contained within the region of interest.
This assumption is not generally true for superconductors [30]. For type II superconductors,
although the wavefunction varies on the scale of the coherence length (ξ), the length scale
over which energy changes occur when the supercurrent density changes is macroscopic. For
simplicity we assume in this paper that local equilibrium is reached on a length scale that
is much smaller that any of the other characteristic length scales for the superconductivity
but larger than atomic lengths. The moments (i.e. circulating supercurrent density) can be
considered to intersect the region of interest and produce flux that is both inside and outside
of it1. Equally, supercurrents outside the region of interest produce flux within it. We retain
the Helmholtz energy density postulated by Ginzburg and Landau, since it follows from the
conservation of energy for the macroscopic system if it is interpreted as the work done by both
external field and superelectrons. It also has the necessary property that changes in f do not
depend on the source of the change in the magnetic field at the point of interest (i.e. f depends
on B). We use a physical argument to find the Zeeman term which added to the Helmholtz
energy density gives the Gibbs energy density—which by definition has a minimum value in
equilibrium. The necessity for a Zeeman term is well established in deriving the properties of
superconducting thin films [8]. In general it accounts for the increase in entropy that follows
from the moment dropping to a lower energy level (or in classical terms rotating into the
direction of the applied field). We assume that there is a field contribution to the region of
interest both from the external field and from the supercurrents and that there is a contrib-
ution to the moments inside the region of interest from both the supercurrent and the magnetic
ions. This gives a Zeeman term of the form (B/µ0 − Mions) · M , where M is the total
magnetization produced by the superelectrons and the magnetic ions at any point of interest.
The term is consistent with that required to describe metallic thin films [8]. We also add in
a term Hext which changes the zero-Gibbs-energy-density condition and ensures that if the

1 In this context it is useful to think of a local definition of magnetic moment where
∫

M dV = 1
2

∫
r × J dV where

r is the radius vector [25, 26].
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material is not superconducting, the properties of the magnetic ions are properly described.
The G–L equations are unaffected by adding Hext . Hence we postulate that the Gibbs energy
density is of the form

g(B, T ) = α |ψ |2 +
1

2
β |ψ |4 +

1

2m
|(−ih̄∇ − 2eA)ψ |2

+
∫ (

B

µ0
− Mions

)
· dB −

(
B

µ0
− Mions

)
· (µ0M + µ0Hext ). (7)

Equilibrium properties are found from solutions which self-consistently minimize g. We
note that in the standard literature, the same G–L equations follow when minimizing either the
Helmholtz energy density or the Gibbs energy density, so for bulk materials the two energy-
density terms are often used interchangeably [28, 31]. In the generalized formulism proposed,
g (rather than f ) must be minimized to find equilibrium properties.

This paper considers magnetic superconductors which have been a long-standing and
interesting issue [32]. Much of the early experimental work in this area was compromised
by uncertainty as to whether the superconductivity and the magnetic ordering really coexisted
in the same part of the material or whether the material in fact consisted of two separate
phases. However, there are a number of different classes of materials in which it is now
generally believed that the superelectrons and the ions responsible for the magnetic ordering
coexist within the unit cell [32–34] but are spatially separated. Hence the exchange interaction
between the superelectrons and the magnetic ions which often prevents superconductivity
occurring [35] is negligible. The dominant interaction is dipolar. This interaction produces
low ordering temperatures of order 1 K (cf. section 6). The simplest magnetic superconductors
are considered [29] where the crystal structure ensures that although the interaction between
the magnetic ions themselves can be dipolar and/or exchange driven, the superelectrons and
the magnetic ions are completely spatially separated [33, 34].

4. Equilibrium properties of superconductors

An important question that arises is whether the Gibbs energy-density functional proposed is
in principle solvable for both metallic and magnetic superconductors. The G–L equations for
metallic superconductors have two unknowns, the local wavefunction and the local value of
magnetization from the supercurrent. They completely specify the magnetic properties of the
superconductor. The spatial variation and magnitude of these two unknowns are found as a
function of the local net field by simultaneously solving the two G–L equations. Macroscopic
properties can then be calculated self-consistently in terms of the externally applied field. At
first sight, when magnetic superconductors are described using the functional (and indeed
equivalent functionals in the literature), it appears problematic since the functional includes a
third unknown variable Mions . However, when the superelectrons are spatially separated from
the magnetic ions, Mions is determined only by the local net field, independently of whether
the material is in the superconducting or the normal state. Hence the normal-state properties
of the magnetic ions provide a third equation or equivalently a constraint on Mions in terms
of B. We conclude that in conjunction with this constraint, the functional proposed can be
solved quite generally to give the values of the local wavefunction and Msc (and Mions) in
terms of B.

In Abrikosov’s original work, he found a periodic structure for the flux-line lattice [3].
Kleiner et al subsequently found that the equilibrium state was the hexagonal flux-line lattice
[36]. In this section, we follow broadly the mathematical approach of Abrikosov/Kleiner to
find equilibrium properties as outlined in the excellent text by Tilley and Tilley [28].
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4.1. Metallic superconductors

First, consider metallic superconductors. Minimizing equation (7) with respect to the wave-
function gives the first G–L equation:

αψ + β|ψ |2ψ +
1

2me

(−ih̄∇ − 2eA)2ψ = 0. (8)

The linearized wavefunction (ψL), first proposed by Abrikosov [3], is a solution to the
first G–L equation with the term in β set to zero. It is of the form

ψL(x, y) =
∞∑

n=−∞
Cn exp(inky) exp

[
− (x − xn)

2

2ξ 2(T )

]
(9)

where one can prove [28]

xn

nk
= ξ 2(T )

h̄2

2m|α| (10)

and

µ0HC2 = ϕ0

2πξ 2(T )
(11)

where Cn are constants, ξ is the coherence length and the upper critical field BC2 = µ0HC2

[28]. The values of k and Cn are chosen to describe a periodic array of vortices. Abrikosov
found a mathematical identity for this wavefunction of the form [3]

eh̄

me

∇ × (|ψL|2k̂) = ieh̄

me

(ψ∗
L ∇ψL − ψL ∇ψ∗

L) +
4e2

me

ψ∗
LψLAC2 (12)

where BC2 is related to AC2 by

BC2 = ∇ × AC2 = φ0

2πξ 2
k̂ (13)

and ϕ0 is the fundamental flux quantum. Abrikosov’s [3] constant is required in this paper; it
is defined by

βA =
〈|ψL|4〉〈|ψL|2〉2 . (14)

The constant βA has a value of 1.16 for the hexagonal structure, 1.18 for the square
structure and is higher for rectangular and rhombohedral structures of high aspect ratio [36].

The second G–L equation is obtained by minimizing the Gibbs energy density with respect
to the magnetic vector potential. We assume that self-consistent solutions can be found for
MSC and ψ , if MSC is of the form

MSC = − (BC2 − B)

µ0
S (15)

where S is independent of magnetic field and temperature. Equation (15) necessarily ensures
that when B = BC2, MSC = 0. It is important to note that when relating MSC to B,
one is averaging out the detailed structure of the moments. This averaging is an important
issue when calculating the structure of fluxons. Nevertheless we make this assumption to
ensure that to first order, all required terms in g are explicitly included. The function
+

∫
(B/µ0 − Mions) · dB − (B/µ0 − Mions) · (µ0M + µ0Hext ) can be expressed as a

parabolic function of B. We define P as the scalar coefficient of the term in B2/2µ0 in the
parabolic function. Hence the second generalized G–L equation can be written in the form

P ∇ × B

µ0
= − ieh̄

me

(ψ∗ ∇ψ − ψ ∇ψ∗)− 4e2

me

ψ∗ψA (16)
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where

P = 1 − 2S. (17)

For metallic superconductors, ∇ × B = µ0 ∇ × MSC . Comparing the second G–L
equation with the Abrikosov identity gives for B ≈ BC2

MSC = −eh̄|ψL|2
Prme

k̂. (18)

There are a number of techniques for finding |ψL|2. Close to the upper critical field, we
assume that self-consistent solutions to the G–L equations can be found of the form [28]

A = AC2 + A1 (19)

and

ψ = ψL. (20)

Taking the non-linear first G–L equation, multiplying byψ∗
L and integrating over all space,

and then using the Abrikosov identity gives for B ≈ BC2 [20, 28]〈(
eh̄

me

A1 · ∇ × (|ψL|2k̂) + β|ψL|4
)〉

= 0. (21)

Using equations (18) and (19), equation (21) can be written as〈
(−PMSC · (B − BC2) + β|ψL|4)〉 = 0 (22)

or equivalently〈(
eh̄

me

|ψL|2(B − BC2) + β|ψL|4
)〉

= 0. (23)

Hence 〈|ψL|2〉 is of the form〈|ψL|2〉 = me

eh̄µ0

〈(BC2 − B)〉
2κ2βA

(24)

where the volume integrals for terms of the form (BC2 − B) are taken over the volume of the
superconductor alone and the G–L parameter (κ) is defined by [28]

κ2 = m2
eβ

2µ0e2h̄
. (25)

Substituting equation (24) into the volumetric integral of equation (18) gives

〈MSC〉 = −〈(BC2 − B)〉
µ0 2κ2PβA

. (26)

Comparing equation (26) to the volumetric integral of equation (15) gives

1 = 2κ2PSβA. (27)

Equations (17) and (27) lead to a quadratic equation which has the solutions

S = 1 ±
√

1 − 4/(βAκ2)

4
. (28)

Hence once βA is known for the equilibrium structure, equation (28) gives S and hence the
local and the macroscopic magnetization. Given that the macroscopic magnetization has been
calculated, the structure of the flux-line lattice (or equivalently βA) in the equilibrium state can
be calculated from finding the minimum in the Gibbs energy for the entire material. From the
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definition of the Gibbs energy (or macroscopic Gibbs energy density) written in terms of H

(cf. equation (5)), one has

GSC(H)−GN(H) = −µ0

∫
〈MSC〉 · dH. (29)

Rewriting 〈MSC〉 in terms of H gives

〈MSC〉 = −〈(BC2 − B)〉
µ0

S = − 〈(HC2 − H)〉 S

(1 − S)
. (30)

The difference between the Gibbs energy in the superconducting state (GSC(H)) and the
normal state (GN(H)), equal to that at H = HC2, is

GSC(H)−GN(H) = −µ0
〈
(HC2 −H)2

〉
2

S

(1 − S)
. (31)

For a cylindrical sample, one can replaceH byHext . From equations (28) and (31), for any
value of κ , the Gibbs energy can be calculated for any value of βA (i.e. any periodic flux-line
lattice structure). Therefore the values of S and βA that give the minimum value of the Gibbs
energy can be determined. The parameter βA determines the structure of the flux-line lattice
through equation (14) and S gives the macroscopic magnetization through equation (30).

4.2. Magnetic superconductors

The properties of the magnetic ions are described using the normal-state relation:

Mions = χ ′H = χ ′B
µ0(1 + χ ′)

(32)

where the bulk differential susceptibility is χ ′. Self-consistent solutions for MSC can be found
when it is expressed in the form

MSC = − 1

(1 + χ ′)
(BC2 − B)

µ0
SM (33)

whereSM is a function ofχ ′, κ andβA. The second G–L equation for magnetic superconductors
is of the form

PM ∇ × B

µ0
= PM(1 + χ ′)∇ × MSC = − ieh̄

me

(ψ∗ ∇ψ − ψ ∇ψ∗)− 4e2

me

ψ∗ψA (34)

where PM is defined again as the coefficient of B2/2µ0 in the function +
∫
(B/µ0 − Mions) ·

dB−(B/µ0−Mions)·(µ0M +µ0Hext ). For magnetic superconductors, equation (8) remains
valid. Given that∫
(B − Mions) · dB − (B − Mions) · (µ0M + µ0Hext )

= 1

µ0

∫ (
B − χ ′B

1 + χ ′

)
· dB

− 1

µ0

(
B − χ ′B

1 + χ ′

)
·
(
χ ′B

1 + χ ′ − (BC2 − B)SM

1 + χ ′ + µ0Hext

)
. (35)

For magnetic superconductors, PM is given by

PM = (1 − χ ′ − 2SM)

(1 + χ ′)2
. (36)
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Equation (27) still holds, and leads to a quadratic equation for SM which has the solutions

SM = (1 − χ ′)
4

(
1 ±

√
1 − 4(1 + χ ′)2

βAκ2(1 − χ ′)2

)
. (37)

We can again consider the macroscopic Gibbs energy written in terms of H:

GSC(H)−GN(H) = − 1

(1 + χ ′)
µ0

〈
(HC2 −H)2

〉
SM

2(1 − SM)
(38)

since

〈MSC〉 = − 1

(1 + χ ′)
〈(BC2 − B)〉

µ0
SM = −〈(HC2 − H)〉 SM

(1 − SM)
. (39)

For any given values of κ and χ ′, equations (37) and (38) can be used to determine the
value of βA which gives the minimum Gibbs energy (i.e. when βA = βA(Max)) and hence
the equilibrium properties. Note that when a material is superconducting, 〈Mions〉 is changed
from its equivalent normal-state value. The difference in the total magnetic moment produced
by superconductivity from what would occur in the normal state is (1 + χ ′)〈Msc〉.

5. Graphical and analytic solutions

In principle, equations (28) and (37) provide two solutions of S and SM for given values of κ ,
βA and χ ′. However, the positive root is discarded since it leads to βA → ∞ which implies
macroscopic regions in the Meissner state. Although the Meissner state is a solution to the
two G–L equations, it is not a minimum of the Gibbs energy density close to the upper critical
field (except for κ � 1/

√
2). Hence for metallic superconductors S is of the form

S = 1 −
√

1 − 4/(βAκ2)

4
. (40)

Only values of βA greater than 1.16 are considered, since Kleiner et al [36] have shown
that this is the lowest possible value of βA (βA(hex) = 1.16). Comparing equations (31) and
(40), the Gibbs energy is minimized when S is a maximum subject to the constraint that S is
real so κ2βA/2 � 1.

5.1. Metallic superconductors

At values of κ above 1.86, the minimum value of the Gibbs energy occurs when βA is 1.16,
so the structure of the flux-line lattice is hexagonal. As κ decreases below 1.86, higher values
of βA are required to meet the constraint that S is real and hence find the minimum (real)
Gibbs energy. Therefore non-hexagonal structures are the most stable. Hence the value of
βA for the lowest energy state (defined as βA(Max)) and values of S can be determined for
any value of κ from equations (28) and (31). Using the condition that in the Meissner state
〈|ψL|2〉 = |α|/β, it can be shown that materials are type I when κ � 1/

√
2 [29]. In figure 1,

values of the dimensionless variables βA(Max), S, S/(1 − S) and P are shown as functions
of the G–L parameter (κ), for metallic superconductors in equilibrium. There is agreement in
the high-κ limit with the Abrikosov result (i.e. (∂〈MSC〉/∂〈H〉)H≈HC2

= 1/[(2κ2 − 1)βA])
since S(κ→∞) = 1/2κ2βA(hex) (cf. equations (30) and (40)).

The solutions can be described analytically. For κ2 > 4/βA(hex), the hexagonal structure
is found for the flux-line lattice, βA = βA(hex) = 1.16, and equations (28), (30) and (31)
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Figure 1. Values of the dimensionless variables βA(Max), S, S/(1 − S) and P as functions of the
Ginzburg–Landau parameter (κ) for metallic superconductors in equilibrium. When κ < 1/

√
2,

there is type I behaviour. For 1/
√

2 < κ < 1.86, there is type II behaviour with a non-hexagonal
flux-line lattice. For κ > 1.86, there is type II behaviour with a hexagonal flux-line lattice.

give equilibrium solutions. When 1/2 � κ2 � 4/βA(hex), (i.e. 0.71 � κ � 1.86), the
non-hexagonal structure is found for the flux-line lattice where

βA(Max) = 4/κ2 (41)

S = 1

4
(42)

〈MSC〉 = −〈(HC2 − H)〉
3

(43)

GSC −GN = −µ0
〈
(HC2 −H)2

〉
6

. (44)

Note that (unlike in standard G–L theory) the macroscopic magnetization (equation (43))
and the Gibbs energy (equation (44)) are independent of κ for non-hexagonal flux-line lattice
structures.

5.2. Magnetic superconductors

For magnetic superconductors when κ2 > 4(1 + χ ′)2/βA(hex)(1 − χ ′)2, hexagonal structures
of the flux-line lattice occur and βA = βA(hex) = 1.16. Equations (41), (43) and (44) give
equilibrium properties. The non-hexagonal structures occur when

(1 + χ ′)
2

< κ2 <
4(1 + χ ′)2

1.16(1 − χ ′)2

(i.e. (1 + χ ′)/
√

2 < κ < |1.86(1 + χ ′)/(1 − χ ′)|) and one has

βA(Max) = 4(1 + χ ′)2

κ2(1 − χ ′)2
(45)

S = (1 − χ ′)
4

(46)
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〈MSC〉 = − (1 − χ ′)〈(HC2 − H)〉
(3 + χ ′)

(47)

GSC −GN = −µ0(1 − χ ′)
〈
(HC2 −H)2

〉
2(3 + χ ′)

. (48)

As with metallic superconductors, the condition for type I behaviour can be derived using
the result that in the Meissner state 〈|ψL|2〉 = |α|/β. This gives [29]

κ2 � (1 + χ ′)
2

(49)

Graphical solutions for a superconductor with κ = 4 as a function of susceptibility are
shown in figure 2. The values of βA(Max), S, S/(1 − S) and PM are shown. βA(Max) det-
ermines the structure of the flux-line lattice and shows that although a metallic superconductor
(i.e.χ ′ = 0) with κ = 4 has a hexagonal structure, as the differential susceptibility increases the
structure becomes non-hexagonal when χ ′ ∼= 1 and becomes hexagonal again as χ ′ increases
yet further. The values of S and S/(1 − S) change sign at χ ′ = 1, consistent with the
superelectrons producing a diamagnetic response for χ ′ < 1 and a positive magnetization
contribution (ferromagnetic superconductivity) for χ ′ > 1 [20]. PM also changes sign at
χ ′ = 1. These sign changes occur for all materials regardless of their κ-value. Since the
second Ginzburg–Landau equation leads to the London equation, one can derive a low-field
wave equation for the superconductor which shows that when PM is positive one expects the
Meissner state in low fields and when PM is negative one expects fluxons and antifluxons
in the bulk of the material—antiferromagnetic superconductivity [20]. Ferromagnetic and
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Figure 2. Values of the dimensionless variablesβA(Max), SM , SM/(1−SM) andPM for a magnetic
superconductor where κ = 4, as functions of the differential susceptibility of the material in the
normal state. The boundaries, relevant for high magnetic fields, at which the flux-line lattice
changes from hexagonal to non-hexagonal are shown. For χ ′ < 1, the macroscopic magnetization
is diamagnetic in high magnetic fields and the Meissner state in low magnetic fields. For χ ′ > 1,
the equivalent states are ferromagnetic and antiferromagnetic. Not shown (discussed in the text):
when χ ′ ∼= 1, βA(Max) → ∞ and one may expect type I-like behaviour; when χ ′ > 2κ2 − 1 the
material becomes an antiferromagnetic superconductor.
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antiferromagnetic superconductivity can be considered very simply in the high-κ limit when
S � 1, since when B ≈ BC2, 〈MSC〉 is

〈MSC〉 = − (1 + χ ′)2

(1 − χ ′)
〈(HC2 − H)〉

2κ2βA
(50)

which clearly shows the change in sign about χ ′ = 1. Equally in the high-κ limit when
SM � 1, PM = (1 − χ ′)/(1 + χ ′)2 and equation (34) leads to a generalized London equation
and a wave equation of the form [20]

∇2B = (1 + χ ′)2

(1 − χ ′)
B

λ2
(51)

where one uses the usual approximation λ2 = m/4e2µ0ψ*ψ . When χ ′ < 1, one finds
exponentially decaying solutions consistent with the Meissner state. When χ ′ > 1, one finds
oscillatory solutions consistent with antiferromagnetic superconductivity.

There are two regions in the phase diagram of a magnetic superconductor where one can
consider a type I–type II phase transition. Firstly at extremely high values of susceptibility
(not shown in figure 2) the condition given by equation (49) must eventually be met so the
material becomes an antiferromagnetic superconductor. Whether the material passes through
the ferromagnetic phase or not depends on the material’s κ-value. For antiferromagnetic
superconductivity, there are equal numbers of fluxons and antifluxons in the material so the
net flux density is zero and the material behaves macroscopically similarly to a type I material
in the Meissner state. Secondly, when χ ′ ∼= 1, βA → ∞ which implies very large variations
in the magnetic field which will eventually render the perturbation approach used in this paper
invalid. Nevertheless, in this limit one can expect widely separated chains of fluxons leaving
macroscopic regions which contain no fluxons and may lead to a type I–type II transition.

6. Comparison with the literature

The simplicity of the isotropic model considered in this paper cannot provide a complete
description of complex materials. There are many material-dependent microscopic properties
and magnetic interactions including spin-flip scattering, conduction electron polarization, the
degree of non-locality and RKKY interactions [11, 13, 17, 18, 30, 32, 37–44] that have
been considered in the literature within the G–L framework and could be required. We
note that if superconductors are considered that are more complex than those in this paper,
additional interactions must be written in terms of local parameters and M . In a layered
superconductor [45–49] or a material with superelectrons constrained to parts of the unit cell
(which is almost inevitable in conventional superconductors with coexisting superconductivity
and magnetism), the value of κ assigned to the parent material would be higher than that of the
superconducting layer alone, since (∂〈MSC〉/∂〈Hext 〉)Hext≈HC2

is averaged over the volume
of the material rather than just the layer—hence one may expect non-hexagonal structures to
occur at higher values of κ in layered superconductors. For example, although unconventional
superconductivity has been suggested as the origin of the square flux-line lattice in Sr2RuO4, it
has nearly two-dimensional metallic properties and a κ-value of only 2.6 [15, 50] (and incipient
ferromagnetism [51]). We make the general observation that the non-hexagonal structure is
well established experimentally in low-κ isotropic metallic materials [7, 9], in layered metallic
[52] superconductors such as YNi2B2C [53] and in magnetic superconductors [14–16]. It
also tends to occur at low temperatures, where one can expect to find strong paramagnetism
consistent with the results of this work.
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6.1. Type I–type II magnetic phase transition

The result
∂〈MSC〉
∂〈Hext 〉 Hext≈HC2

= 1

3

for metallic type II superconductors at low κ-values can be compared to the standard G–L
result

∂〈MSC〉
∂〈Hext 〉 Hext≈HC2

= 1

(2κ2 − 1)βA

which approaches infinity as κ → 1/
√

2. In figure 3, the magnetic properties of a cylindrical
polycrystalline tantalum wire doped with nitrogen [21] are shown (converted to S.I. units).
As the temperature decreases, κ increases and the material changes from type I to type II.
The dashed lines show that (∂〈MSC〉/∂〈Hext 〉)Hext≈HC2

is a weak function of κ close to the
type I–type II phase transition. In particular, at 3.5 K although the material is almost type I,
(∂〈MSC〉/∂〈Hext 〉)Hext≈HC2 has the relatively low value of ∼1.7. Similarly low values (but
less comprehensive magnetic data) are available for Nb [4] and V [5].
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Figure 3. Highly reversible magnetization curves for a TaN wire as functions of field and temp-
erature. The temperatures have been rounded to two significant figures. The dashed lines give
values for (∂〈MSC〉/∂〈Hext 〉)Hext≈HC2

at each temperature. Data from Auer and Ullmaier [21].

In figure 4 (upper panel), a type I–type II phase transition is shown for a spherical
single crystal of the magnetic superconductor ErRh4B4 for the field applied along the a-
axis [23]. Crabtree et al [22] have highlighted the first-order transition by presenting data on
a spherical crystal of ErRh4B4 in terms of the internal field (figure 4, lower panel). There is
qualitative agreement with theory since the phase transition is not observed when the field
is applied along the very weakly paramagnetic c-axis, implying that the phase transition
is driven by strong paramagnetism. This interpretation implies that at low temperatures,
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is applied along the a-axis. Upper panel: the initial magnetic response versus applied field. Data
from Behroozi et al [23]. Lower panel: µ0M versus internal field. Data from Crabtree et al [22].

the low-magnetic-field phase is antiferromagnetic superconductivity. We also note that the
appearance of a spontaneous magnetic field in zero applied field at temperatures well below
TC , for example in the magnetic superconductor UPt3, may be explained by antiferromagnetic
superconductivity [54].



The non-hexagonal flux-line lattice in superconductors 6109

6.2. Transport properties—re-entrant superconductivity

Finally, we discuss the evidence for the assertion that as magnetic superconductors become
strongly paramagnetic they tend to show re-entrant superconductivity. Although the
thermodynamic arguments in this paper cannot explain resistance versus temperature data,
we discuss whether the change in the connectivity of the fluxons at χ ′ ∼= 1 plays a role. The
work of Kleiner et al [36] shows that apart from the hexagonal structure for which there is
a unique value of βA, in general more than one structure can have the same value of βA and
hence the lowest Gibbs energy. For example, a square structure and a rhombohedral structure
(where the ratio of the diagonals is ∼2.3) both have a value of βA equal to 1.18 [36]. Clearly
any anisotropy or flux pinning may lift the degeneracy of these different structures. In the case
of very high values of βA(Max), there may be well-separated chains of closely spaced fluxons
that extend across the entire sample. The wavefunction will be strongly depressed in these
chains when the normal cores of the fluxons overlap, giving barriers of weakly superconducting
material. This would be similar to type I superconductors in the intermediate state [7] where
one can observe resistance when there is no percolative path around fluxon barriers. The
resistance may either be due to flux flow because of weak pinning or dissipation as the local
depairing current is reached in the barriers. Hence when χ ′ ∼= 1, the material may become
resistive.

The classes of materials that are considered are the Chevrel phase materials [33] and the
nickel–boron carbides [34]. The materials show coexistence of long-range magnetic ordering
and superconductivity with magnetic ordering temperatures that are relatively low. In general,
the magnetic ions that can be incorporated in these materials have measured Bohr magneton
values that are similar to theoretical values for free ions [55, 56]. This is consistent with band-
structure calculations which show there is very little overlap between the conduction electrons
and magnetic ions [32]. For example, in the Chevrel phase materials, the Curie temperatures
are in the range of 0.5–2 K, which suggests that the exchange interaction is relatively weak
and dipolar interactions are important—as assumed in section 3.

Magnetic properties are considered first. The nickel–boron carbide materials are strongly
anisotropic. For example, in DyNi2B2C, when Hext ‖ c-axis and Hext ⊥ c-axis, the Curie–
Weiss temperature is −25 K and +82 K respectively [57, 58]. Even in the Chevrel phase
materials, which have almost cubic structure and almost isotropic properties, the precise
composition affects the crystal field and the temperature dependence of the differential
susceptibility. In table 1, values of the Curie–Weiss temperature (θCW ) and the effective
Bohr magneton number (peff ) for strongly magnetic Chevrel phase (rare-earth–Mo6S8) and
nickel–boron carbide superconductors are presented. The values in table 1 are for bulk poly-
crystalline samples so they are angular averages [56, 59]. The values of θCW and peff for the
Chevrel phase materials were calculated from differential susceptibility measurements in the
temperature range below 15 K, except for the GdMo6S8 where the values have been determined
for T < 300 K. The nickel–boron carbide values are from differential susceptibility data below
100 K. The uncertainty in θCW is typically ∼3 K for the nickel–boron carbides and ∼1 K for the
Chevrel phase materials. The values of peff are similar to theoretical calculations for isolated
ion values [27]. An estimate for the temperature (Tχ ′=1) at which χ ′ extrapolates to 1 can be
found by using the Curie–Weiss law

χ ′ = C/(T + θCW )

where C = 2.6p2
eff /V (Å3) and V (Å3) is the volume of the atomic formula unit cell in Å3

(i.e. Tχ ′=1 = C − θCW ). Clearly there are concerns when using the isotropic Curie–Weiss law
to describe such complex materials; for example, magnetic ordering is ignored. Nevertheless
we suggest that Tχ ′=1 gives a reasonable first approximation for the temperature at χ ′ ∼= 1.
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Table 1. The Curie–Weiss temperature (θCW ), the effective Bohr magneton number (peff ,
dimensionless), the Curie constant (C), the temperature at which the differential susceptibility
extrapolates to 1 (Tχ ′=1) and the temperature for the re-entrant resistive behaviour (Tρ) for strongly
magnetic nickel–boron carbide [56] and Chevrel phase superconductors [32, 59, 60]. Tχ ′=1 is set
to zero when calculated to be negative. For TbNi2B2C and DyNi2B2C, detailed measurements are
not available for the superconducting state below 2 K.

Nickel–boron carbides Chevrel phases

Tb Dy Ho Er Tm Gd Tb Dy Ho Er

θCW /K −10.2 −9.8 −1.5 −2.2 10.8 + 1 −1.1 −0.15 + 0.35 + 0.45

peff 11.1 10.4 9.8 7.7 9.9 7.5 9.59 10.4 10.60 9.53

C/K 2.5 2.2 1.9 1.2 2.0 0.53 0.87 1.02 1.06 0.86

Tχ ′=1/K 12.7 12.0 3.4 3.4 0 0 1.97 1.17 0.71 0.41

Tρ/K — — 6.0 6.0 2.6 0.95 1.0 0.6 0.75 0.6

In typical re-entrant resistive behaviour, the resistance first drops at the superconducting
transition. As the temperature decreases further, the resistance passes through a minimum,
and then increases showing the re-entrant resistive behaviour followed by re-entrant
superconductivity [32, 56, 60]. The mechanism causing the resistance must both switch on
over a limited temperature range and then switch off again at lower temperatures. To simplify
the explanation, typical data from the literature are shown in figure 5 for Gd1.2Mo6S8. We have
chosen to characterize the re-entrant behaviour by the temperature (Tρ) at which the resistance
passes through the minimum. In table 1, values of Tρ for strongly magnetic Chevrel phase
(rare-earth–Mo6S8) and nickel–boron carbide superconductors are presented [56, 59].
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Figure 5. The resistance of Gd1.2Mo6S8 as a function of temperature and dc magnetic field. Clear
re-entrant behaviour is observed. Data from the textbook edited by Maple and Fischer [32].

Comparing the values of Tχ ′=1 and Tρ in table 1, all the Chevrel phase materials for
which θCW and peff have been measured for T < 15 K (i.e. except GdMo6S8) show re-
entrant behaviour at about 1 K. Re-entrant resistance preferentially occurs when the material
becomes strongly paramagnetic, whether the exchange interaction is ferromagnetic or anti-
ferromagnetic (i.e. θCW negative or positive). The re-entrant behaviour of TmNi2B2C is at
only 2.6 K although peff is high. In the HoNi2B2C and ErNi2B2C, there is reasonably good
agreement between the values of Tχ ′=1 and Tρ [56]. For TbNi2B2C and DyNi2B2C, neither
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the differential susceptibility nor possible re-entrant resistance has yet been investigated in the
superconducting state below 2 K.

In the light of the complexity of the Chevrel phase and (particularly) the nickel–boron
carbide superconductors, the simplicity of the isotropic theory and the limited data available,
we conclude that there is some evidence for a correlation between the re-entrant resistance and
magnetic superconductors becoming strongly paramagnetic (i.e. χ ′ ∼= 1). Re-entrant resistive
behaviour has only otherwise been observed at low temperatures (∼1 K) in materials such as
the rhodium borides that include rare-earth (strongly paramagnetic) ions [61]. We are not aware
of any established explanation in the literature for the correlation of strong paramagnetism in
magnetic superconductors and re-entrant resistivity.

7. Concluding comments

Results presented in this paper are consistent with the magnetic properties predicted for metallic
superconductors using standard analysis when κ2 � 1. For low-κ materials, new equilibrium
properties have been found which are not consistent with the standard description [31]. In
particular we propose there is a special class of low-κ superconductors with a non-hexagonal
flux-line lattice for which 〈MSC〉 is independent of κ . When materials that are strongly
paramagnetic in the normal state become superconducting, a ferromagnetic contribution from
the superelectrons can be produced in high magnetic fields and an antiferromagnetic one in low
fields. Our long-standing interest in flux pinning in magnetic and metallic superconductors
was the original motivation for this work. Reliable expressions for the Gibbs energy are a
prerequisite for addressing the long-standing issues of calculating elastic constants for the
flux-line lattice [62], the strength of magnetic and non-magnetic pinning sites [63] and reliable
solutions for the so-called ‘grand summation’ of pinning forces [64]. The generalized G–L
theory will impact on these areas and others that are of interest to the superconductivity
community.
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